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We derive the fluctuational magnetization and the paraconductivity of Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO� superconductors in their normal state. The FFLO superconducting fluctuations induce oscillations of
the magnetization between diamagnetism and unusual paramagnetism which originates from the competition
between paramagnetic and orbital effects. We also predict a strong anisotropy of the paraconductivity when the
FFLO transition is approached in contrast with the case of a uniform BCS state. Finally building a Ginzburg-
Levanyuk argument, we demonstrate that these fluctuation effects can be safely treated within the Gaussian
approximation since the critical fluctuations are prominent only within an experimentally inaccessible tem-
perature interval.
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I. INTRODUCTION

Forty years ago, Fulde and Ferrell,1 and Larkin and
Ovchinnikov2 predicted that the paramagnetism of the elec-
tron gas might induce a novel superconducting state wherein
the order parameter is modulated in real space. In their origi-
nal proposal, these authors considered a singlet s-wave su-
perconductor perturbed by the Zeeman effect �paramagnetic
effect� and neglected completely the orbital coupling and the
disorder. For most type-II superconductors, the superconduc-
tivity is destroyed by the orbital pair-breaking effect which
leads to a more familiar inhomogeneous superconducting
state: the Abrikosov vortex lattice. In order to observe the
Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state, the para-
magnetic effect must break Cooper pairs more efficiently
than the orbital one. Such a situation may be realized in
three-dimensional �3D� superconductors with large internal
exchange fields, like the rare-earth magnetic superconductor
ErRh4B4, see Ref. 3 for a review. Another possibility corre-
sponds to a quasi-two-dimensional �2D� layered supercon-
ductor wherein the weakness of the interplane hopping sup-
presses the orbital effect for in-plane magnetic field. Being
the ratio of the critical fields, Hc

orb�T=0� in the pure orbital
limit and Hp�T=0� in the pure paramagnetic limit, the Maki
parameter �m=�2Hc

orb�T=0� /Hp�T=0� quantifies the relative
strength of those pair-breaking mechanisms. Besides de-
manding a large Maki parameter ��m�1.8�, the occurrence
of the FFLO state also requires very clean samples since it is
far less robust against disorder than the usual vortex lattice;
see Refs. 4 and 5 for recent reviews.

Recently, there have been mounting evidence that the
heavy fermion superconductor CeCoIn5 under magnetic field
might fulfill those stringent conditions,6–8 although the mag-
netism of this system is still under debate. A superconducting
phase has been reported at large magnetic field and low tem-
perature which is distinct from the uniform superconducting
phase realized at lower fields. The characteristics of this
phase depends on the orientation of the field relatively to the
basal plane of the tetragonal CeCoIn5 lattice.5 In the field-
induced organic superconductor9 �-�BETS�2FeCl4 and in the
layered organic superconductor10 �-�BEDT-TTF�2Cu�NCS�2

the FFLO state have been reported when a strong magnetic
field �20 T for latter one� is applied along the superconduct-
ing planes.

However in practice, the identification of the FFLO state
is hindered by the interplay between orbital and paramag-
netic effects. The first available experimental clue is the
shape of the transition line Hc�T� separating the normal state
from the inhomogeneous superconducting state. A lot of
theoretical works have been devoted to the description of
this Hc�T� line. For moderate Maki parameters, �m�9, the
structure of the FFLO modulation involves a zero Landau-
level �index n=0� function �Gaussian with no additional
modulation�.11 For higher Maki parameter, �m�9, the Coo-
per pair wave function of a 3D superconductor consists in a
cascade of more exotic solutions, the so-called multiquanta
states, which are described by a higher �index n�0� Landau
level.12 Such values of Maki parameters are rather high for
3D compounds �for instance, CeCoIn5 has �m=4.6–5� but
they can be achieved in layered quasi-2D superconductors
�or superconducting thin films� under in-plane magnetic
fields.13 All these studies were performed so far in the frame-
work of isotropic models, namely, for the idealistic case of a
spherical Fermi surface in the normal state. Moreover it has
been shown that an elliptic Fermi surface leads to the same
phenomenology at cost of introducing an angle-dependent
Maki parameter.14

In real compounds, the crystal lattice �or the pairing sym-
metry� induces a nontrivial anisotropy which matters a lot for
the modulated state15,16 since it essentially lifts the degen-
eracy between various orientations of the FFLO modulation.
Recently, the interplay of paramagnetic and orbital effects
was reconsidered in the presence of such a nontrivial aniso-
tropy, namely, for a Fermi surface which slightly differs from
the spherical or elliptical shape.17 Using a perturbative ap-
proach, it was found that even a small anisotropy stabilizes
the exotic multiquanta states which can therefore exist at
lower Maki parameter �any �m�1.8� than predicted by the
idealized isotropic models. According to this prediction such
states are likely to occur in any real anisotropic Pauli limited
superconductor. More specifically in the tetragonal symme-
try, three scenarios are possible for the FFLO state: �a� maxi-
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mal FFLO modulation along the field with zero Landau-level
state, �b� highest Landau-level modulation in the plane per-
pendicular to the field and no FFLO modulation, and �c� both
Landau-level and FFLO modulations. These three scenarios
correspond to the tetragonal symmetry and were derived
within a single Landau-level approximation, which is valid at
large field. It may thus be relevant to explain the observation
of two high-field and low-temperature phases of CeCoIn5,
which exhibit contrasted behaviors under distinct magnetic-
field orientations �inside or perpendicular to the CeIn3
planes�. Nevertheless the shape of the Hc�T� transition line is
far from sufficient to establish a clear correspondence be-
tween one phase and a particular class of solutions among
the three �a�–�c� possibilities. It is thus necessary to gain
complementary information to determine which scenario
among �a�–�c� is actually realized. As natural precursors of
the transition, the fluctuations in the normal state provide
information about the superconducting state itself. We shall
show here that fluctuations enable to detect the presence of a
FFLO state in both 2D and 3D superconductors, and allow us
to discriminate between the various �a�–�c� scenarios in the
tetragonal 3D case. We concentrate on the region near the
tricritical point �T� ,H��, which is the meeting point of the
three transition lines separating, respectively, the normal
state, the uniform, and the modulated superconducting
states.4,18

In this paper, we evaluate the fluctuation-induced magne-
tization near the FFLO transition in both 2D and 3D aniso-
tropic superconductors using the modified Ginzburg-Landau
�MGL� functional.19–21 Previously we calculated the fluctua-
tional specific heat and conductance near the pure FFLO
transition in the absence of orbital effect.22 Our motivation
was to establish a relation between the topology of the
lowest-energy-fluctuation modes and the divergencies of the
physical properties at the FFLO transition. In the isotropic
model, those divergencies are very different than the stan-
dard BCS ones since the topologies of the degenerate FFLO
and BCS modes differ fundamentally. Unfortunately, in the
anisotropic models, this degeneracy is lifted and the topolo-
gies of FFLO and BCS modes become quite similar, thereby
leading to less contrasted behaviors.

In the two-dimensional case, we also show that the ratio
between the paraconductivities along ��xx� and perpendicular
��yy� to an in-plane applied magnetic field H=Hex is drasti-
cally enhanced near the FFLO transition, in comparison
to the one near the uniform BCS transition. Moreover we
demonstrate that the high-field fluctuational magnetization of
thin films may oscillate between positive �paramagnetism�
and negative �diamagnetism� values. These oscillations
originate from the competition between orbital and para-
magnetic effects which tend to promote, respectively,
Landau-level modulation and FFLO modulation. Being pre-
cursors of the Meisner or Abrikosov lattice state, the super-
conducting fluctuations are usually diamagnetic. There-
fore the paramagnetism predicted here is a hallmark of
the unconventional FFLO state. At lower field, the magneti-
zation is suppressed near the FFLO transition in comparison
to the BCS case. These features should also pertain in the
case of layered 2D compounds such as �-�BETS�2FeCl4 or
�-�BEDT-TTF�2Cu�NCS�2.

In 3D superconductors under high magnetic field, these
oscillations are blurred out when scenario �a� is realized
whereas they pertain when scenario �b� takes place, thereby
providing an experimental test to distinguish among the vari-
ous possible structures of the order parameter described in
Ref. 17. Experimentally, the superconducting fluctuations in
CeCoIn5 have been investigated far above Tc and under low
fields.23,24 Here we suggest similar measurements near Tc
under strong magnetic field and near the FFLO critical tem-
perature.

The paper is organized as follows. In Sec. II, we present
the MGL formalism which includes higher-order derivative
of the order parameter than the standard Ginzburg-Landau
functional. Such an extension is necessary to handle the non-
uniform FFLO state. In Sec. III, we analyze the case of thin
superconducting films under in-plane magnetic field and pre-
dict a strong dependence of the conductance upon the mutual
orientation of the current flow and magnetic field. We also
derive the fluctuation magnetization induced by a tilted mag-
netic field pointing out of the film plane. In Sec. IV, we
discuss the 3D anisotropic compounds with emphasis on the
fluctuation magnetization. In the Appendix, we provide a de-
tailed derivation of the Ginzburg-Levanyuk criterion for the
FFLO transition in order to justify the Gaussian approxima-
tion used in the whole paper.

II. FORMALISM

Here we introduce the MGL free-energy functional and
detail how the fluctuation-induced properties can be obtained
from the spectrum of the fluctuations. This approach is valid
near the tricritical point. The location of the tricritical point
in the temperature �T�-magnetic-field �H� phase diagram de-
pends on microscopic details of the model like the concen-
tration and the type of impurities, the crystal and the order-
parameter symmetries. Nevertheless the formula of this
section is valid generically around the tricritical point, inde-
pendently of its precise location. Note that for a clean s-wave
superconductor the tricritical point is located at T�

=0.56Tc0 , 	BH�=1.07kBTc0, Tc0 being the critical tempera-
ture in the absence of Zeeman effect and 	B the Bohr
magneton.4,18

A. Modified Ginzburg-Landau functional

At the vicinity of the tricritical point �T� ,H��, the FFLO
transition can be described by a Ginzburg-Landau-like ap-
proach since the order parameter 
�r� and its spacial gradi-
ents are small.19 The corresponding free-energy functional,
called hereafter the MGL functional, differs from the usual
Ginzburg-Landau functional by the presence of higher-order
derivatives of the order parameter 
�r�. This is related to the
fact that the FFLO phase corresponds to a nonuniform
ground state. This MGL functional may be directly derived
from the microscopic BCS theory for clean isotropic s-wave
superconductors with Zeeman interaction19 and allows exten-
sion to conventional and unconventional singlet supercon-
ductors in the presence of paramagnetic, orbital, and impu-
rity effects.20,21 The quadratic terms ��
�r��2, ��
�r��2, etc.�
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of the MGL describe the free dynamics of the order param-
eter while higher-order terms ��
�r��4, �
�r��6, etc.� account
for the interactions. In this paper, we analyze the fluctuations
within the Gaussian approximation whereby only the qua-
dratic terms are retained.25 In the Appendix, we shall justify
this approximation by demonstrating that the interaction
terms are small in the experimentally relevant range of pa-
rameter Tc0 /EF�1, EF being the Fermi energy.

Within the Gaussian approximation, the MGL functional
writes

HG�
� =� dr���
�2 − gi�Di
�2 + �ij�DiDj
�2� , �1�

where the summation over the index i=x ,y ,z is implied and

�=a�T− T̃c�, with T̃c�H� being the critical temperature for
the uniform superconducting second-order phase transition.
The components Ai of the vector potential enter the MGL
through the covariant derivatives Di=�i+2ieAi /
 while the
coefficients � , gi and �ij are functions of the temperature
and field. The detailed microscopic expressions of these co-
efficients as functions of T and H can be found in Refs.
19–21 for various crystal lattices and in presence of para-
magnetic, orbital, and impurity effects. As a salient and com-
mon feature of these functionals,19–21 coefficients gi change
sign at the tricritical point, thereby inducing an inhomoge-
neous superconducting phase when gi�0, namely, at low
temperature and high field �H /T�H� /T��. Then the FFLO

critical temperature Tc�H� is larger than T̃c�H� implying a
transition between the normal state and a nonuniform super-
conducting state. Note that the idealized isotropic form of
this functional corresponds to gi=g and �ij =�.

B. Fluctuation free energy in the absence of orbital effect

In the absence of magnetic field, the order parameter can
be expanded in-plane waves as 
�r�=�k
keik.r. In this Fou-
rier representation, the free energy �Eq. �1�� can be rewritten
as HG�
�=�k�k�
k�2 where

�k = � − giki
2 + �ijki

2kj
2 �2�

describes the spectrum of the decoupled fluctuation modes

k. The partition function Z=Tr�e−HG/kBT� is obtained by
tracing over all the possible values of these modes 
k which
reduces to an infinite product of Gaussian integrals,

Z = 	
k

�kBT

�k
. �3�

The corresponding thermodynamical free energy �per unit
volume� F=−kBT ln Z is given by26

F = kBT� dkd

�2��d ln
�k

�kBT
. �4�

In the isotropic case �gi=g and �ij =��, the spectrum �k=�
−gk2+�k4 can be exactly rewritten as

�k = � + ��k2 − q0
2�2, �5�

where q0
2=g /2� and �=�−g2 /4�. The FFLO transition

arises at the critical temperature Tc�H� defined by �=0,
namely, at

Tc�H� = T̃c�H� +
g2

4�a
, �6�

which is higher than the critical temperature for the transition

toward a uniform superconductor T̃c�H�. In the normal state
T�Tc�H�, Eq. �5� makes apparent that the lowest-energy-
fluctuation modes are degenerate and located around the
sphere k2=q0

2 in reciprocal space.

C. Fluctuation free energy with orbital effect

Here we consider Eq. �1� in the isotropic case �gi=g and
�ij =�� in presence of the orbital effect associated with a
magnetic field H=Hez. Within the gauge Ax=0 and Ay =xH,
the order parameter is conveniently represented in terms of
Landau wave functions. This follows from the fact that the
mean-field equation �H /�
�=0 reads as

�� + gD2 + �D4�
�x,y,z� = E
�x,y,z� . �7�

Owing to the translational invariance along y and z, the mo-
menta ky and kz are good quantum numbers. In the absence
of the fourth-order derivative ��=0�, the solutions of Eq. �7�
are well known,27 being the standard Landau wave functions

�r�=�n,ky,kz

= f�x�eikyy+ikzz. The equation for f�x�

g
d2f

dx2 − g
ky +
2e



Hx�2

f + �� − gkz
2�f = Ef�x� �8�

is similar to the harmonic-oscillator equation with “inverse
mass” −g and the frequency �c=−4eHg /
2. Therefore the
Landau levels �for �=0� are given by27

En�kz� = � − gkz
2 + 
�c
n +

1

2
� �9�

where n=0,1 ,2 , . . . while kz is a continuous wave vector.
We now solve Eq. �7� in the presence of the fourth-order

derivative ���0� which is a hallmark of the MGL functional
and FFLO state. We first show that the Landau wave func-
tions �n,ky,kz

�r� �eigenstates of �+gD2� are still eigenstates
of the differential operator �+gD2+�D4. Indeed introducing
the quantized wave vector Qn �n=0,1 ,2 , . . .� defined by

Qn
2 �


�c

− g

n +

1

2
� =

4eH




n +

1

2
� , �10�

one obtains immediately that

gD2�n,ky,kz
= − g�kz

2 + Qn
2��n,ky,kz

, �11�

�D4�n,ky,kz
= ��kz

2 + Qn
2�2�n,ky,kz

, �12�

and therefore28

�� + gD2 + �D4��n,ky,kz
= En�kz��n,ky,kz

, �13�

with the fluctuation spectrum
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En�kz� = � + ��Qn
2 + kz

2 − q0
2�2. �14�

Note that En�kz� is still degenerate, being independent of ky.
Finally the free-energy functional reduces to the sum

HG�
� = �
n,ky,kz

En�kz���n,ky,kz
�2 �15�

over decoupled modes �n,ky,kz
. The partition function Z

=Tr�e−HG/kBT� is obtained by tracing over all the possible
values of these modes �n,ky,kz

and finally reduces to an infi-
nite product of Gaussian integrals,

Z = 	
n,ky,kz

�kBT

En�kz�
. �16�

The corresponding thermodynamical free energy �per unit
volume� F=−kBT ln Z is given by

F =
H

�0
kBT�

n=0

� � dkz

2�
ln

En�kz�
�kBT

, �17�

where the prefactor H /�0 accounts for the degeneracy of
each Landau level at given n and kz.

27 Here �0=h /2e is the
superconducting flux quantum. In the two-dimensional case
the quantum number kz is irrelevant and the average free
energy per unit surface is given by

F =
H

�0
kBT�

n=0

�

ln
En�kz = 0�

�kBT
. �18�

The magnetization along the z axis is simply given by M
=−�F /�H.

D. Transport

Besides thermodynamics, the fluctuations also affect the
transport properties. A standard procedure consists in using
the time-dependent Ginzburg-Landau equation to obtain the
current-current correlator at different times.26,29 Then a gen-
eral formula for the paraconductivity tensor,

�ij =
�e2akBT

4

� dkd

�2��d

vkivkj

�k
3 , �19�

can be obtained within the Kubo formalism.30 It should be
noticed that the momentum dependence of the velocity com-
ponent vki=��k /�ki along the i axis is very different from its
usual form owing to the presence of the �ijki

2kj
2 terms in the

dispersion relation �2�. In particular, vki are no longer linear
combinations of the momentum components ki. Formula �19�
provides the so-called classical Aslamasov-Larkin contribu-
tion to the paraconductivity. It is well known that the quan-
tum Maki-Thomson contribution can be important especially
in the two-dimensional case.30 In this paper, we study the
FFLO transition at the vicinity of the tricritical point �T� ,H��
where the strong pair-breaking mechanism suppresses the
Maki-Thomson contribution.

III. SUPERCONDUCTING THIN FILMS

Here we consider thin superconducting films where the
FFLO state is realized due to the paramagnetic effect of an

in-plane magnetic field H=H
ex. We assume that the lattice
has the square symmetry and thus equivalent properties in
the x and y directions in the absence of field. In Sec. III A,
we first neglect the orbital effect associated with H=H
ex
and calculate the paraconductivity �xx=�yy. Then we treat
perturbatively the orbital effect associated with H=H
ex and
find that the paraconductivity �xx measured along the applied
magnetic field differs from the one ��yy� measured perpen-
dicular to the field �Sec. III B�. Finally, we also discuss the
effect of a perpendicular magnetic field H=Hez which in-
duces magnetization oscillations between diamagnetism and
paramagnetism �Sec. III C�. This behavior is in sharp con-
trast with the usual fluctuation-induced diamagnetism pre-
dicted and observed close to the BCS transition.26,30

A. Pure paramagnetic limit

In the pure paramagnetic limit, the in-plane magnetic field
H=H
ex only acts on the spins. Hence one can set Ai=0 in
MGL functional �1� and use spectrum �2� to describe the
superconducting fluctuations in the normal state. By increas-
ing H
 and lowering the temperature, one may tune the thin
film near the tricritical point where g=0. The parameter g
may change sign, thereby indicating an instability toward the
inhomogeneous FFLO state when g is positive.

Furthermore the square symmetry implies gx=gy =g, �xx
=�yy =�, and �xy =�yx=�� in Eq. �2�. Isotropy is only re-
stored when �=1 which corresponds to a circular Fermi
surface.22 Then the low-energy modes are located around the
whole circle defined by k2=q0

2=g /2� in reciprocal space,
according to Eq. �5�. In the general case ���1�, the quartic
terms �ijki

2kj
2 introduce a nontrivial anisotropy and the lowest

energy are realized around isolated points of the reciprocal
state �Fig. 1�.

The paraconductivity �xx=�yy near the FFLO transition
�g�0� is obtained from Eq. �19� where the integral extends
over the whole reciprocal space. Nevertheless due to the de-

FIG. 1. Minima of the fluctuation spectrum �k for the two-
dimensional model with square symmetry. The filled �open� ellipses
indicate the locations of the lowest-energy fluctuations for ��1
���1�. Note that in the isotropic model ��=1�, there is an infinity
of degenerate minima located on the circle �solid line�.
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nominator �k
3 in Eq. �19�, the main contribution comes from

the lowest-energy-fluctuation modes.
We shall first identify these isolated minima kmin of the

energy by solving ��k /�kx�kmin�=��k /�ky�kmin�=0. The lo-
cation of these minima differs in the cases ��1 and ��1,
respectively �Fig. 1�. In the case ��1, the spectrum �k has
four minima located along the x and y axes, namely, at points
A���q0 ,0� and B��0, �q0� of the reciprocal space �Fig. 1�.
Near the minima A� located along the x axis, we find that the
spectrum can be approximated by

�k
�A�� � � + 2g�kx � q0�2 + g�� − 1�ky

2 �20�

with �=�−g2 /4�=a�T−Tc�. The expression for the FFLO
critical temperature Tc coincides with Eq. �6� as long as
��1.

Similarly, the spectrum around the minima B��0, �q0�
located along the y axis is given by

�k
�B�� � � + g�� − 1�kx

2 + 2g�ky � q0�2. �21�

The next step consists in evaluating the generalized veloci-
ties around each minima. For instance, around A+, we obtain

vkx =
��k

�A+�

�kx
= 4g�kx − q0� , �22�

vky =
��k

�A+�

�ky
= 2g�� − 1�ky . �23�

Finally, we evaluate integral �19� around the minimum A+.
Reproducing this steps for the other minima A−, B+, and

B− and summing the contributions from the four minima, one
obtains the paraconductivity

�xx = �yy =
e2akB

4�2


1 + �

�� − 1

 Tc

T − Tc
� . �24�

which diverges at the FFLO transition.
The second case ��1 can be treated along the same line

of reasoning, albeit the four degenerate minima kmin�
= �kmin x� ,kmin y� � are now located on the diagonals with
�kmin x� �2= �kmin y� �2=q0

2 /2 �Fig. 1�. The spectrum can be ex-
panded as

�k � � − �
i,j=x,y

�ij�ki − kmin i� ��kj − kmin j� � , �25�

around any of those four minima denoted A+�, A−�, B+�, and
B−� �Fig. 1�, with �=�−g2 /2��1+��=a�T−Tc�. For instance,
we find

�xx = �yy =
2g

1 + �
and �xy = �yx =

2g�

1 + �
�26�

around A+��q0 /�2,q0 /�2�. Diagonalization of the tensor �ij

leads to the eigenvalues �X=2g and �Y =2g�1−�� / �1+��
along the principal axes X and Y.

Finally summation over the four minima �Fig. 1� yields

�xx = �yy =
e2akB

2


g2�2

�1 + ��3�1 + �

1 − �

 Tc

T − Tc
� . �27�

Note that in this regime ��1, the expression for the FFLO
critical temperature Tc differs slightly from Eq. �6�.

Above expressions �24� and �27� both diverge for �→1,
which indicates stronger Gaussian fluctuations in the isotro-
pic model.22

B. Orbital effect associated with an in-plane magnetic field

We now take into account the orbital effect associated
with the in-plane magnetic field �H=H
ex� and show that it
breaks the square symmetry, inducing distinct paraconduc-
tivities along the x and y directions.

In the case of thin films with a strong confinement in the
z direction, this orbital effect is small. Then it is still possible
to describe the fluctuations by spectrum �2� with
H
-dependent coefficients,31 namely, by

�k = � − g
k2 +
�H
d�2

12�0
2 � + �
k4 +

�H
d�4

80�0
4 �

+ 2��� − 1�kx
2ky

2 +
�H
d�2

6�0
2 ���kx

2 + 3�ky
2� , �28�

where k2=kx
2+ky

2, d is the width of the film along the z axis,
and �0=h /2e is the superconducting quantum of flux. Ow-
ing to the smallness of the dimensionless parameter
�H
�d /q0�0�2, it is still possible to use Eq. �19� in order to
evaluate the paraconductivity tensor following the same pro-
cedure than in Sec. III A. Here � is the superconducting co-
herence length.

Due to the field �H
� dependence of the coefficients in Eq.
�28�, the minima of �k are displaced �in comparison to the
case H
�d /q0�0=0 shown in Fig. 1� according to ���1�,

A� → A�
�� g

2�
−

��H
d�2

12�0
2 ,0� , �29�

B� → B�
0, �� g

2�
−

�H
d�2

4�0
2 � . �30�

Moreover the square symmetry is broken since the critical
temperature associated with modulation A� differs from the
one for B�. It happens that the FFLO modulation occurs
along the field �points A�� for ��3. In contrast for ��3 the
modulation occurs along the y axis �points B�� which is
perpendicular to the applied field.31

We concentrate on the case for 1���3 wherein the or-
der parameter is modulated along the field H=H
ex. The
paraconductivity comes from the contributions around the
points A+ and A−. Then the paraconductivity �xx measured
along the field differs from the one �yy measured in the per-
pendicular direction. As a main result of this section, the
ratio �xx /�yy contains a contribution which diverges at the
FFLO transition �g�0�,
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�xx

�yy
� = 1 +

�

6g

H
d

�0
�2�� − 3

� − 1
+

g2

2��

�� − 3�2

� + 1
� . �31�

This term produces a strong enhancement of �xx /�yy when
the transition is approached, namely, when �=a�T−Tc�
→0+. This is in sharp contrast with the transition toward a
uniform BCS state. There the ratio of the paraconductivities,


�xx

�yy
�

BCS
= 1 −

��� − 3�
6g


H
d

�0
�2

, �32�

does not contain any divergent term at the BCS transition
�g�0�. Such an enhancement of �xx /�yy may serve as an
experimental signature of the FFLO state. This property is
reminiscent of the recent finding that critical current oscil-
lates as a function of magnetic orientation in anisotropic 2D
films.31

C. Orbital effect in a perpendicular magnetic field

Finally, we discuss the effect of a perpendicular compo-
nent H�ez when the field H=H
ex+H�ez is tilted out of the
film plane. The perpendicular component H�ez quantizes the
in-plane motion of the fluctuating Cooper pairs and induces a
finite magnetization. This effect is larger than the orbital mo-
tion associated with the in-plane part of the field. We there-
fore neglect the later �which is correct for H
�d��0� and
use MGL functional �1� within the gauge Ax=0 and Ay
=xH�, like in Sec. II C.

In the anisotropic case, the eigenmodes of this functional
are not known exactly for finite H� precluding an analytical
evaluation of the magnetization. Nevertheless the isotropic
model already exhibits oscillations of the fluctuation magne-
tization. Recently the fluctuational magnetization �persistent
current� of small rings made of a FFLO superconductor was
obtained within the framework of the isotropic model intro-
duced in Sec. II C. In the following, we derive a simple
formula for the magnetization in the simpler planar geometry
of superconducting films.32

The fluctuation spectrum is given by Eq. �14� and the free
energy per unit surface by Eq. �18� with H=H�. Particular
form �14� of the spectrum enables both degeneracies between
the Landau levels �En=En+1� and commensurability effects
between the wave vectors Qn and q0.

Single-mode (high fields) approximation. For large per-
pendicular field, namely, H� /�0��� /�, the Landau levels
are well separated from each others and the main contribu-
tion to free energy �18� comes either from the single level
with minimal energy En or from two levels when a degen-
eracy �En=En+1� occurs.

Let us first consider the nondegenerate case. Then the free
energy is simply given by the single-level contribution

Fn =
H�

�0
kBT ln

En�kz = 0�
�kBT

�33�

and the corresponding orbital magnetization �per unit sur-
face�

Mn = −
�8n + 4�kBT

�0
2 � ��Qn

2 − q0
2�

� + ��Qn
2 − q0

2�2�H� �34�

is highly nonlinear since the prefactor of H� depends
strongly on the field and on the temperature. Importantly the
magnetization may change sign due to the presence of the
factor Qn

2−q0
2 in the numerator. In order to make more trans-

parent, formula �34�, one may introduce the field-dependent
temperature Tcn�H� where the denominator vanishes

a�T − Tcn� = � + ��Qn
2 − q0

2�2. �35�

This relation defines the second-order transition line Tc
�n��H�

between the normal and the modulated superconducting state
described by the nth Landau level. We also define the points
such as A, C, and E �Fig. 2� along this transition line where
the numerator vanishes since Qn

2=q0
2. Those points are also

located on the second-order transition line TcP�H� between
the normal and the FFLO superconducting state calculated in
the pure paramagnetic limit. In the normal state, the orbital
magnetization can be therefore re-expressed as

Mn = −
�8n + 4�kBT

�0
2

�

a

Qn

2 − q0
2

T − Tcn
�H�. �36�

This 2D magnetization is diamagnetic when Qn
2�q0

2 and
paramagnetic when Qn

2�q0
2 �Fig. 2�. In contrast, the fluc-

tuation magnetization is always diamagnetic in the BCS
case. However Mn follows a similar power law �T−Tc

�n��−1

and is on the same order of magnitude than the BCS
magnetization.30 Consequently we expect that the oscilla-
tions between diamagnetism and paramagnetism should be
measurable in thin films of FFLO superconductors. This

�

�

�

�

�

�

�

�

� � �

� 	 �




�

�




�

FIG. 2. Schematic field-temperature �H ,T� phase diagram show-
ing the cascade of Landau levels. The thick dashed curve represents
the critical field in the absence of orbital effect. In the presence of
orbital effect, the critical field is reduced and described by the thin
dashed curves which corresponds, respectively, to the n=0, n=1,
and n=2 Landau levels. The solid line represents schematically the
expected transition line between the normal and the superconduct-
ing states. The fluctuations are diamagnetic between zero field �H
=0,Tc� and B, paramagnetic near the arc AB, then again diamag-
netic near the arc BC, etc. The Landau levels are degenerate at
pointsB, D, etc. This schematic picture is relevant for both 2D
FFLO superconductors and for 3D ones where the Landau-level
modulation is realized �scenario �b� evoked in the introduction�.
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single-mode approximation breaks down when the nth and
�n+1�th Landau levels are degenerate, namely, when En
=En+1. Then the two levels must be included together in the
free energy, whereas the other Landau levels are still far in
energy and can be neglected safely. The resulting magnetiza-
tion Mn+Mn+1 is slightly diamagnetic at degeneracy.

Continuum (low fields) approximation. The single-mode
approximation breaks down in the weak-field limit �H� /�0
��� /�� where the Landau-level separation becomes so
small that all the levels have to be taken into account. This
situation corresponds to a magnetic field which is slightly
tilted out of the film plane. In the case of a uniform BCS
superconductor, the standard result for the magnetization is33

M =
�

3

kBT

�0
2

g

a�T − T̃c�
H�, �37�

which is diamagnetic �g�0� and diverges at the BCS critical

temperature T̃c�H� for the second-order phase transition. This
diamagnetic response is suppressed when the tricritical point
is approached, i.e., when g→0− �Fig. 2�.22 On the FFLO side
�region g�0 in Fig. 2� and for a given magnetic field, the
system becomes a FFLO superconductor before the diver-

gency develops because Tc� T̃c.
Conclusion. At high fields H�, the magnetization near the

FFLO transition line oscillates between sizeable diamagne-
tism and paramagnetism as the transitions between succes-
sive Landau levels are realized. In the low-field limit, these
transitions become very close and the oscillations average
themselves leading to a cancellation of the linear response
and a suppression of the divergency. This situation is in
strong contrast with the standard BCS case where the mag-
netization is always diamagnetic. We suggest to perform
magnetization measurements in thin films near an expected
FFLO transition. The suppression of the fluctuational mag-
netization at low perpendicular field and the restoration of
sizeable oscillations between paramagnetism and diamagne-
tism at higher perpendicular field should be a strong indica-
tion for the FFLO state in quasi-two-dimensional com-
pounds.

IV. ANISOTROPIC 3D SUPERCONDUCTORS

It is commonly believed that the FFLO state in CeCoIn5
corresponds to a modulation along the applied magnetic
field. Nevertheless it was argued recently that this situation is
unlikely to happen for arbitrary field orientations when the
tetragonal anisotropy of CeCoIn5 is properly taken into ac-
count. Apparently if the order-parameter modulation is along
the field for H�c �respectively, H 
c�, then the modulation is
likely to be perpendicular to the field for H 
c �respectively,
H�c�.17 Here we investigate the FFLO fluctuations in an-
isotropic 3D compounds, building upon the various mean-
field scenarios reported in Ref. 17. We evaluate the fluctua-
tional magnetization M along the magnetic field H=Hez. In
particular, we demonstrate below that the magnetization os-
cillates between sizeable diamagnetism and paramagnetism
when the modulation is perpendicular to the field �Landau
level like�. Those oscillations are the 3D counterparts of the

ones predicted in the previous section for superconducting
films. In contrast the magnetization is shown to be strongly
suppressed when the modulation occurs along the field
�FFLO-type modulation�. In the 3D case, magnetization
measurements therefore provide an experimental tool to dis-
criminate between the two possible order-parameter struc-
tures uncovered in Ref. 17.

A. Mean field

We start by a short reviewing of the mean-field properties
of the functional

H = ��
�2 − �
i=x,y,z

g�Di
�2 + �� �
i=x,y,z

Di
2�2

+ �z�Dz
2
�2

+ �x��DxDy
�2 + �DyDx
�2� + ���DxDz
�2

+ �DzDx
�2� + ���DyDz
�2 + �DzDy
�2� �38�

consistent with the tetragonal symmetry of CeCoIn5. The
terms �z, �x, and � describe nontrivial �namely, different
from a simple elliptical� anisotropy.17 Note that the cubic
symmetry corresponds to �x=� and �z=0. It was shown that
two kinds of modulated superconducting states �scenarios �a�
and �b� mentioned above in Sec. I� are the most likely to
occur when anisotropies are properly taken into account.

Class (a) of solutions corresponds to order parameters
modulated along the field with characteristic FFLO wave
vector q0 and in the n=0 Landau level. Following the mean-
field analysis of Ref. 17, we write the fluctuation spectrum as

En=0�kz� = � + �a
2eH



+ kz

2 − q0
2�2

, �39�

which indicates an instability toward finite modulation along
the z axis �magnetic field�. This is similar to Eq. �14� except
for that the Landau index is fixed �n=0�, and �a is a renor-
malized parameter �specific to this class �a� of solutions�
which depends on �z, �x, and �.

In class (b) of solutions, the modulation occurs in the
plane perpendicular to the field and is described by a higher
�n�0� Landau level. Following the mean-field analysis of
Ref. 17, we write the fluctuation spectrum as

En�kz� = � + �b�Qn
2 − q0

2�2 + gbkz
2. �40�

This spectrum differs from Eq. �39� since the kinetic-energy
term gbkz

2 favors kz=0. Furthermore a finite Landau index is
possible since the energy is also minimized by choosing n
such as Qn

2−q0
2�0. In brief, the lowest-energy fluctuations in

the normal state resemble the superconducting ground state
which is modulated perpendicularly to the field. Note that
here �b and gb are also renormalized parameters which are
specific to the class �b� of solutions and depend on �z, �x, and
� in a complicated manner.17

B. Fluctuation magnetization

Here we evaluate the magnetization induced by the FFLO
fluctuations taking into account the intrinsic anisotropy
present in 3D compounds. The FFLO transition might hap-
pen under low or strong field, depending on the underlying
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microscopic mechanism. For instance, in the rare-earth mag-
netic superconductor ErRh4B4 a small field is sufficient to
polarize the internal moments and the FFLO transition is
thus expected at low applied magnetic field.3 Here we treat
the case of the FFLO transition occurring under strong mag-
netic field which is relevant for the case of the heavy fermion
superconductor CeCoIn5. Using a single Landau-level ap-
proximation, we demonstrate that the magnetization exhibits
qualitatively distinct behaviors depending on the class of so-
lutions.

FFLO-like modulation along the field, characterized by a
finite wave vector q0 and Landau index n=0 �scenario �a�
discussed in Sec. I]. The 3D density of free energy is given
by the integral

F = kBT
H

�0
� dkz

2�
ln

En=0�kz�
�kBT

, �41�

where the energy En=0�kz� is given by Eq. �39�. Hence the
most divergent part of the orbital magnetization �per unit
volume� M =−�F /�H is given by

M = −
2kBT

�0
2 ��

−�

�

dkz

�a�2eH/
 + kz
2 − q0

2�
� + �a�2eH/
 + kz

2 − q0
2�2�H ,

�42�

where �0=h / �2e�. Since the numerator of the integrand can-
cels and changes sign as a function of kz, one expects a
strong suppression of the fluctuation magnetization com-
pared to the uniform BCS case wherein such a cancellation
does not occur. Indeed the magnetization M diverges loga-
rithmically at the FFLO transition which is less divergent
than the �−1/2 law predicted in the standard BCS case. There-
fore the presence of a genuine FFLO state should be detected
as a suppression of the fluctuation diamagnetism observed
near the BCS transition. In comparison with the 2D case, the
oscillations between paramagnetism and diamagnetism pre-
dicted in the previous section are blurred out by the disper-
sion over the momentum kz along the field.

Landau-level modulation perpendicular to the field [sce-
nario (b) discussed in the introduction]. The dispersion of
the fluctuations �Eq. �40�� now favors the absence of modu-
lation along the z axis in contrast to spectrum �39�. Upon
increasing the parameter q0

2, the lowest-energy Landau level
is successively n=0, then n=1, etc. Near the BCS transition,
the fluctuations induce diamagnetism and a lowering of the
critical field Hc2�T� below the purely paramagnetic critical
field HP�T� at the same temperature �Fig. 2�. When the nth
Landau level is realized and when all the other Landau levels
are distant in energy, one can single out the contribution of
this main level to the density of free energy

F = kBT
H

�0
�

−�

� dkz

2�
ln

� + �b�Qn
2 − q0

2�2 + gbkz
2

�kBT
. �43�

Writing the orbital magnetization as

Mn = −
�4n + 2�kBT

�0
2 ��

−�

�

dkz

�b�Qn
2 − q0

2�
� + �b�Qn

2 − q0
2�2 + gbkz

2�H�

�44�

shows that the 2D oscillations are no longer suppressed by
the integration over kz since the numerator is independent of
kz. Calculating the integral shows that the magnetization di-
verges as

Mn = −
�4n + 2�kBT

�0
2

�b

�agb�1/2
Qn

2 − q0
2

�T − Tcn�1/2H� �45�

with the same power law than in the BCS transition of 3D
superconductors.30 Unlike the BCS case, this fluctuation
magnetization changes sign being diamagnetic when Qn

2

�q0
2 �arcs BC and DE in Fig. 2� and paramagnetic when

Qn
2�q0

2 �arcs AB and CD�.
In brief, the magnetization is sizeable and oscillates be-

tween paramagnetism and diamagnetism when the supercon-
ducting order parameter is modulated perpendicularly to the
field, whereas it is strongly suppressed when the order pa-
rameter is modulated along the field. Therefore magnetiza-
tion measurements may serve as a test to discriminate be-
tween FFLO and Landau-level-like modulations in 3D
anisotropic superconductors.

V. CONCLUSION

We investigated the conductivity and the orbital magneti-
zation associated with superconducting fluctuations above
the FFLO critical temperature or field. Both in 2D and 3D
models, we shown that these properties differ considerably
than their counterparts at the vicinity of a standard BCS
transition toward a homogeneous superconducting state,
thereby providing an experimental tool to detect the inhomo-
geneous state. First, the paraconductivity of thin supercon-
ducting films exhibits a strong anisotropy when measured
parallel or perpendicular to the FFLO modulation. Second,
the orbital magnetization oscillates between diamagnetic
and paramagnetic behaviors at high fields and is strongly
suppressed at low fields, whereas the uniform BCS state al-
ways induces diamagnetic fluctuations above Tc. We suggest
performing magnetization and conductance measurements
along the FFLO transition line in compounds where the
FFLO state has been recently reported. In 2D organic
superconductors,9,10 the magnetization oscillations should be
even more pronounced than in the 3D magnetic supercon-
ductors �ErRh4B4, see Ref. 3� or in the case of the aniso-
tropic 3D heavy fermion superconductor CeCoIn5.6–8 It was
recently shown that CeCoIn5 has quasi-2D Fermi-surface
sheets coexisting with a 3D anisotropic Fermi surface.34

Nevertheless due to strong hybridization, superconductivity
in CeCoIn5 is likely to be described by a single order param-
eter. The complex structure of the Fermi surface should only
modify the expressions of the coefficients in the MGL func-
tional as functions of the microscopic parameters of
CeCoIn5. Moreover, the fact that the Landé factor is aniso-
tropic leads to different Maki parameters depending on the
field orientation and may also shift the position of the tric-
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ritical point.5 Nevertheless the magnetization oscillations/
suppression predicted here are generic of the presence of
FFLO phase and should pertain independently of the micro-
scopic characteristics of CeCoIn5.

Finally, in the 3D case, we find that the absence of such
oscillations reveals a FFLO state modulated along the field
whereas presence of oscillations should be associated with a
multiquanta Landau modulation perpendicular to the field.
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APPENDIX

In this appendix, we address the validity of the Gaussian
approximation used in this paper. When the temperature is
sufficiently close to the critical one, interactions between the
fluctuation modes become so strong that the Gaussian ap-
proximation breaks down. In order to quantify the range of
temperature where this breakdown occurs, we derive the
Ginzburg-Levanyuk criterion for the FFLO transition.25,35,36

1. Ginzburg-Levanyuk criterion for the FFLO transition

The full isotropic MGL functional H�
�=HG�
�
+Hint�
� contains a quadratic part,

HG�
� = Nd�0�� dr��̃�
�2 − g̃�2��
�2 + �4��2
�2� , �A1�

=Nd�0��
k

��̃ + �k2 − q0
2�2�4� , �A2�

which describes the free dynamics of the order parameter

 and nonquadratic terms Hint�
� which describe
interactions.19–21 All the results of this paper are derived
within the Gaussian approximation which consists in using
HG�
� as the free-energy functional thereby neglecting com-
pletely Hint�
�. In the spirit of the original35,36 and
textbook25 Ginzburg-Levanyuk criterion, we evaluate the in-
teraction terms

Hint�
� = Nd�0�� dr� g̃

Tc
2 �
�4 +

1

Tc
4 �
�6� �A3�

in order to compare them with HG�
�.
We have introduced the dimensionless coefficients �̃= �T

− T̃c� / T̃c, �̃= �T−Tc� /Tc, and g̃ to make apparent the order of
magnitude of each term in the MGL functional as a function
of the energy scales Tc and EF. In particular, the dimension-
less parameter g̃ is of order 1. We have also introduced the
d-dimensional electronic density of states Nd�0� and the su-
perconducting coherence length �=vF /Tc �we set 
=1�. Here
q0

2= g̃ /2�2 in analogy with the transformation performed in
Eq. �5�. It is a rather particular property of the MGL func-
tional that the coefficients of the �
�4 and ��
�2 vanish at the

same point �H ,T� of the phase diagram �the tricritical
point�.19 For this reason and since we are solely interested in
orders of magnitude here, we have denoted the coefficient of
the �
�4 term by the same g̃ used for the ��
�2.

For examples of phase transitions, one usually evaluates
only the �
�4 terms.25 Here the situation of the FFLO transi-
tion is rather specific since on the line g̃=g=0 of the �T ,H�
phase diagram the coefficient of the �
�4 term vanishes.
Therefore one should evaluate the next interacting term,
�
�6, for the regions near this line g̃=0. Sufficiently far away
from this line g̃=0 �see the quantitative criterion below�, one
may simply evaluate the �
�4 term.

Using Wick theorem to evaluate Hint�
�=Hint
�4��
�

+Hint
�6��
�, we find

Hint
�4��
� =

2g̃Nd�0�
Tc

2Ld �
k,k�

��
k�2�0��
k��
2�0 �A4�

for the �
�4 term and

Hint
�6��
� = Nd�0��

k

 2

Tc
2Ld�

k�

��
k��
2�0�2

��
k�2�0 �A5�

for the �
�6 term. Note that in this problem the form of the
free-field correlator

��
k�2�0 =
�kBTc/Nd�0�

�̃ + �4�k2 − q0
2�2 . �A6�

is rather special due to the proximity of the FFLO transition.

2. Isotropic model

Far from the tricritical point, namely, when g̃
� �Tc /EF�2�d−1�/�6−d�, the leading correction to the Gaussian
behavior originates from the �
�4 interaction term. Moreover
the fluctuations propagate with a quadratic dispersion and
correlator �A6� can be approximated as

��
k�2�0 =
�kBTc/Nd�0�

�̃ + 4q0
2�4�k − q0�2 �A7�

when evaluating the sum

g̃

Tc
2Ld�

k�

��
k��
2�0 =

g̃d/2�̃−1/2

TcNd�0��d . �A8�

Using TcNd�0��d= �EF /Tc�d−1, we find that the �
�4 interac-
tion terms are negligible in comparison to the Gaussian ones
when the condition �Ginzburg-Levanyuk criterion�

�̃ � g̃d/3
 Tc

EF
�2�d−1�/3

�A9�

is fulfilled. The critical region width is larger than in the
standard BCS case ��� �Tc /EF�4 for d=3 and �̃�Tc /EF for
d=2� but it remains extremely thin.

Near the tricritical point, when g̃� �Tc /EF�2�d−1�/�6−d�, the
�
�6 interaction becomes stronger than the �
�4 one since this
latter contribution is suppressed by the extremely small pref-
actor g̃. In particular, along the g̃=g=0 line in the �H ,T�
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diagram, the ��
�2 and �
�4 terms are totally absent from the
functional.19 Therefore one should compute the mean value
��
k�2�0 with a purely quartic momentum dependence. Since

1

Tc
2

1

Nd�0�Ld�
k�

��
k��
2�0 =

�̃�d−4�/4

TcNd�0��d , �A10�

the condition to neglect the �
�6 interaction between the fluc-
tuation modes is thus

�̃ � 
 Tc

EF
�4�d−1�/�6−d�

. �A11�

The critical fluctuations are present in a larger region of the
phase diagram than for BCS superconductivity.30 During the
completion of this work, we became aware of Ref. 32 where
the Ginzburg-Levanyuk criterion is derived by evaluating ex-
clusively the �
�4 interaction term. We therefore obtain the
same Ginzburg-Levanyuk criterion as in Ref. 32 for the large
g̃ regime whereas our criteria differ when approaching the
tricritical point. In spite of this discrepancy, both procedures
lead to the same practical conclusion that the critical region
remains extremely thin and inaccessible for experimental ob-
servations because of the smallness of the ratio Tc /EF
��10−2–10−3�.

3. Anisotropic model

We now derive the Ginzburg-Levanyuk criterion in the
case of anistropic FFLO superconductors. The large g regime
is modified in comparison to the isotropic case since there
the low-energy fluctuations are located around few isolated
points instead being spread over a large shell of radius q0.

Far from the tricritical point, namely, when g̃
� �Tc /EF�2�d−1�/�6−d�, the leading correction to the Gaussian
behavior originates from the �
�4 interaction term. Moreover
the fluctuations propagate with a quadratic dispersion and
correlator �A6� can be approximated as

��
k�2�0 =
�kBTc/Nd�0�

�̃ + g̃k2�2 . �A12�

Evaluating the sum

g̃

Tc
2Ld�

k�

��
k��
2�0 = 
 �

g̃
��d−2�/2 1

TcNd�0��d �A13�

and using TcNd�0��d= �EF /Tc�d−1, we find that the �
�4 inter-
action terms are negligible in comparison to the Gaussian
ones when the condition �Ginzburg-Levanyuk criterion�

�̃ � g̃�2−d�/�4−d�
 Tc

EF
�2�d−1�/�4−d�

�A14�

is fulfilled. This Ginzburg-Levanyuk criterion is similar
�same power of Tc /EF� than the one encountered in the stan-
dard BCS case.

Near the tricritical point, when g̃� �Tc /EF�2�d−1�/�6−d�, the
lowest-energy fluctuations are located around the origin of
the reciprocal space and have a quartic dispersion like in the
isotropic model studied above. The Ginzburg-Levanyuk cri-
terion is thus again

�̃ � 
 Tc

EF
�4�d−1�/�6−d�

�A15�

near the tricritical point.

4. Conclusion

We have obtained that the size of the critical region in
FFLO superconductors is more extended than in the usual
uniform superconductor case. Nevertheless, for supercon-
ducting compounds, the ratio Tc /EF��10−2–10−3� is small
and the critical region thus remains hardly accessible for ex-
perimental observations, thereby supporting the Gaussian
analysis performed in this paper. This fact makes it very
difficult to observe the phenomena �first-order transition�
predicted by renormalization-group studies.37,38
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